
Methods and Concepts in Experimental Particle Physics
Connor Carrico, Alexander Lowery, Alexander Mattern, Emily Samples, Alex Serati, and Brandon Speegle

College of Science, Virginia Tech
Professor Leo E. Piilonen
5 May, 2025

Abstract :
The modern experimentalist in particle physics relies on a toolbox of equations, theory, software, data processing strategies, programming
languages, and physical instruments. It takes years of practice and study to understand and apply all of the tools in that toolbox, so
well-structured education and documentation are essential to that end. This report highlights the progress made by our undergraduate
research group throughout the spring 2025 semester in learning important lessons related to particle physics experimentation. Existing
math, physics, and coding skills were refined, and followed by the introduction of new software and data analysis skills unique to physics
research. The group successfully progressed through the stages of the project, culminating in the analysis of data previously theorized,
visualized, generated, simulated, and reconstructed across the semester. This project was effective in supporting comprehension through
each step of the process, and—perhaps more importantly—creating an understanding of the process as a whole.

1 Introduction

Our learning began with some basic particle physics concepts
and mathematics, which we practiced in a short problem set. That
practice was then applied to create visual simulations of parti-
cle interactions in Python, which helped us learn about Python,
Visual Python, randomness, generalization of a problem, vectors,
and spherical coordinates.

Once we had obtained a decent grasp on the physics concepts,
visuals, and math, we moved on to creating data. This required
us to gain a basic understanding of the Linux OS, and to connect
to and utilize Tesla, a powerful remote computer owned by the
physics department. We also learned a bit about modern data anal-
ysis and simulation software like Geant4, EVTGEN, ROOT, and
basf2. We utilized that software, along with some pre-existing ex-
amples and code to generate our own simulated data on Tesla,
which we could then copy to our own computers for later anal-
ysis.

The final step was to analyze our data in ROOT, which started
with learning how to navigate in the browser, customize graphs,
and understand units and data. More importantly, we moved on
to creating best fit curves, learning what they mean, how to judge
them, and how to modify them for a better fit.

The remainder of this report will delve into the specifics of each
stepwe took this semester, highlighting the key insights we gained
along the way.

2 Particle Interaction Exercises

To solve various mechanical problems within particle physics,
various laws and mathematical tools can be used in order to solve
them. These include, but are not limited to the following:

1. The Mass Invariant

𝑀 =

√︃
𝐸2𝑡𝑜𝑡 + 𝑝2𝑡𝑜𝑡

2. Four Vectors
®𝑃 =

(
𝐸, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧

)

3. Lorentz Transform Matrix
𝛾 0 0 𝛽𝛾

0 1 0 0
0 0 1 0
𝛽𝛾 0 0 𝛾


By combining all of these tools along with the conservation of

linear momentum, which is relativistically correct, five particle in-
teraction problems were discussed and solved to determine either
the mass of daughter particles, their momentum, or the direction
of said momentum. An example of two particles of equal mass
(𝑃1 and 𝑃2) and differing momenta colliding is solved using four
vectors as follows:

®𝑃1 =
(√︃

𝑝21 +𝑚2, 0, 0, 𝑝1
)

(1)

®𝑃2 =
(√︃

𝑝22 +𝑚2, 0, 0,−𝑝2
)

(2)

®𝑃𝑓 =

(√︃
𝑝2
𝑓
+𝑀2, 0, 0, 𝑝 𝑓

)
(3)

®𝑃𝑓 = ®𝑃1 + ®𝑃2 (4)

Using the identity established in Eq. 4, we get the following:√︃
(𝑝1 − 𝑝2)2 +𝑀2 =

√︃
𝑝21 +𝑚2 +

√︃
𝑝22 +𝑚2 (5)

This expression can then be solved for 𝑀 to get the following
expression:

𝑀 =

√︂
2𝑚2 + 2𝑝1𝑝2 + 2

√︃
(𝑝21 +𝑚2) (𝑝22 +𝑚2) (6)

In this example, the mass invariant and the four vector were
used in order to determine the mass of a daughter particle gen-
erated due to a collision. In order to apply the Lorentz transform
matrix, different frames of reference need to be used. Algebraically
it follows the same process as the example problem, with the main
difference being the application of the matrix:

®𝑃𝑖 = ®𝑃𝑓 𝐿 (7)

Where L is the Lorentz transform matrix, and 𝑃𝑖 , 𝑃𝑓 are four
vectors.



Methods and Concepts

3 Python Simulations
Following our calculations from the particle interactions ques-

tions, we used our results to create a visual demonstration of them.
Using Python and the Visual Python package, our task revolved
around simulating particle collisions and decays described in the
original questions. To begin, we defined a class for the four mo-
mentum vector. This worked as a generalized set of parameters for
each particle, and it allowed us to define the particles as spheres.
This helped to create a number of characteristics for the particles,
such as their mass, size, and color, for the sake of differentiating
them.

We were able to represent the particle interaction for questions
1 and 2 simultaneously, since they both involved the collision of
an electron and a positron. We began by creating a "while" loop,
which updated particle positions with each frame of the anima-
tion, and inserted the generalized version of the physics in ques-
tions 1 and 2, ensuring it had a limit on the length of the visual
demonstration. We can see in Figure 1 the written code for this
section.

Figure 1. A screenshot from Python for questions 1 and 2 of the particle
interactions sheet.

Similar to questions 1 and 2, we easily combined questions 3 and
4 into a new definition function in Python. After plugging in the
results from the questions, we defined a transition to polar coordi-
nates. For this section, we wanted to reproduce the decays of the
particles along many different axes with a uniform distribution.
This required us to slightly modify our code, since we originally
programmed for a "randomness" that unintentionally resulted in
a larger distribution around the poles of the axes. After several
derivations and drawings in spherical coordinates, we were able
to tweak the "rand.uniform" function to account for a completely
random distribution on all axes. Figure 2 demonstrates the written
code for questions 3 and 4, including the adjusted "rand.uniform"
function that changes the "Φ" axis distribution.

To finish setting up for the particle interaction simulations, we
needed to define a scene in which we would observe our results.
Using visual Python, we coded the "vp.canvas" function, which al-
lowed a space for us to run our results.

Finally, we listed all of the values for each parameter, separating
by question, in order to program the visual interactions. Figure 3
depicts these lines of code that told the visual Python how to op-
erate, for it included the four momenta, the masses, the velocities,
and other parameters.

This Python demonstration helped to better visualize our un-
derstanding of the particle interactions referenced in section 2.
Not only was this a test to our programming abilities, but it

Figure 2. A screenshot from Python for questions 3 and 4 of the particle
interactions sheet.

Figure 3. A screenshot from Python for our established values of the in-
dividual interactions.

also provided a more comprehensive learning experience with a
"hands-on" element.

4 Navigating Linux and Tesla
Over the course of this semester, we downloaded and utilized

PuTTY, an open-source terminal emulator, to access Tesla and
copy files from Dr. Piilonen’s directory for use in various soft-
wares, and export what we needed into our own directories to
open and view in ROOT. Each person downloaded the PuTTY
software on their own, along with Linux, the operating sys-
tem that Tesla uses, and were provided with individual Tesla ac-
counts, which were made accessible through the software. Tesla
runs in the Linux operating system, so the download was nec-
essary in order to continue. The login passwords were cus-
tomizable and the usernames were provided in the form ’user-
name@tesla.phys.vt.edu’.

In Tesla, we learned a variety of commands for navigation. The
‘cd’ command was used to navigate between several directories.
The first day we experimented with this, we used the command to
navigate into several preexisting directories. Using the command
‘cd /home/piilonen/’ we navigated into Dr. Piilonen’s directory,
and by using the ‘ls’ command, we were able to generate a list of
all items within this directory. Within the list, we could see what
we could either ’cd’ into or open as a file. Blue text indicated a
directory in the list that could be ‘cd’ed into, while green text in-
dicated executable files, and red indicated compressed files (zipped
files). As such, many ‘.py’ and ‘.sh’ files were listed in green many
directories and subdirectories were listed in blue.

We also used Tesla to copy things into our own directories. To
do this, it was first necessary to make our own individual direc-
tories using the ’mkdir xxx’ command, where ’xxx’ represents the
name chosen for the individual research directories we generated.
Once in our own directories, we could use the ’cp’ or copy com-
mand to copy the necessary files into our own directories. An
example of how we used this command was in our generation
of output root files utilizing the Tesla ’minions’. After copying
the basf2 scripts necessary into our directories, we used the ’qsub’

2



Methods and Concepts

command to assign tasks to minions based on the basf files. The
minions generated Root files, which were then exported to the lap-
top either using the ’scp’ command on Tesla for those on a mac,
or using a different software, WinSCP on Windows systems.

5 Software: Geant4, EVTGEN, & basf2
After acquainting ourselves with the Linux operating sys-

tem and the Tesla computer, we could start using the various
softwares available to us in order to handle large simulations,
calculations, and datasets. EVTGEN is the software that generates
collision/decay events based on known interactions and their
probabilities. Geant4 is the software that takes those events and
simulates the precipitating interactions in a simulated version of
the Belle II detector, keeping track of every particle, atom, and
material, and therefore noting what the detector will detect.

5.1 Application of Software

We started by learning about EVTGEN, first searching through
a master decay file containing all known heavy-flavor physics,
and finding the few decays that fell within the group of interac-
tions we were looking for. We then copied those into our own
decay file, but this was simply an exercise before really applying
EVTGEN.

We were able to make use of EVTGEN by running EVTGEN
files through a more complicated program: basf2. This is Belle
II’s software that handles the generation of simulation data and
processing of that data. We created our own folder in Tesla,
and used the following command to enter the Belle II software
environment which would allow us to use basf2:

source ∼piilonen/belle2/tools/b2setup release-06-00-03

We then copied two EVTGEN files and two basf2 Python
scripts. We ran the basf2 scripts using instructions fed to the
compute nodes ("minions") on Tesla to take the computing
burden of forming those initial events into full simulated
data, which was packaged in the form of a ROOT file. The data
we created would be the basis for all of our later analysis in ROOT.

5.2 Details of Simulation Software

It is important also to note how basf2 works, and how Geant4
comes into this process. The Belle II software, basf2, follows a
multi step process to turn EVTGEN decays/interactions into a
large set of organized data. First, the initial EVTGEN decay files
are used to generate collision events. Second, those events are sim-
ulated in Geant4 to record data of how this collision would play
out within the Belle II detector, and record detector hits within
the simulation. Finally, those simulated detector measurements
are reconstructed into particles and their four-momenta. This full
process results in the data that we see in ROOT.

6 Data Analysis in ROOT
Once we got the proper files from Tesla, we ran ROOT on our

computers. Some of us had minor difficulties with this, as the pro-
cess forMacs andWindows are different, and a few of us had issues

giving our computers permission to run ROOT.Wemanaged to get
around most of the issues we had, and successfully run TBrowser.
With TBrowser, we could view our data and try to map it with a
line of best fit. We found various ways to represent our data, ei-
ther as a 2D graph, or as a 3D Lego chart. TBrowser seems very
useful and versatile, and with more practice we can see it as being
practical for our data analysis.

The final stretch of our research this semester was learning data
analysis tools on ROOT to get a line of best fit of the data we gen-
erated from basf2. The data we generated from basf2 were based
off of simulation using probabilistic physics leading to different
data sets for different users. This data was then put into ROOT
files that we could analyze and make functions of best fit from.

Because of the differences in the “randomly” generated data, we
all wound up with different Chi2 values and thus different Chi2 to
NDF (number of degrees of freedom) ratios when adjusting our
parameters the same way. An important aspect of the data analy-
sis portion of our research was being able to distinguish between
signal and background noise—particularly so in the deltaE graph
which had two gaussians. Figure 8 shows the two gaussians in
question, with the broader curve on left being part of the back-
ground, whereas the more narrow peak toward the right is the
signal we are concerned with.

To create functions that would be able to fit our data in ROOT,
we had to type the following code into the command section of
our ROOT browser:

Figure 4. Fitting MBC

Figure 5. Fitting deltaE

The first line of code described what the function would be
made out of, in the case of MBC it was a gaussian and a 4th degree
polynomial (pol4). The arguments of the functions gaus and pol4
labelled what parameters aligned to what function, which were
defined in the third line of code. The gaussian function took in a
“Constant” (the height of the gaussian), a “Mean” (the mean value
of the gaussian), and a “Sigma” (the standard deviation or width
of the gaussian). The 4th degree polynomial took in 5 parame-
ters—p0, p1, p2, p3, p4—which all made up the coefficients of the
polynomial such that:

𝑝4𝑥
4 + 𝑝3𝑥

3 + 𝑝2𝑥
2 + 𝑝1𝑥 + 𝑝0 (8)

The next line of code sets the values of each parameter in the func-
tion. In our first round of doing this, we set the parameter values
for the polynomial to all be 0, and allowed the function to deter-
minewhich valuesworked best in terms of lowering the Chi2. This
could lead to issues, such as getting stuck in a local minimum of a
best fit when the real best fit could be elsewhere if the parameters

3



Methods and Concepts

Figure 6. Graph of MBC w/ curve of best fit

Figure 7. Values of MBC’s function of best fit

had been changed to a different starting point. The final line gives
the function a starting and ending point.

We began to play around with ways and methods of modifying
the fit to make it better—the closer the Chi2 to NDF ratio is to 1,
the better the fit. Adjusting our parameters allowed us to lower
our Chi2 and bring it closer to the NDF value; we found we could
do this by adjusting where the mean or standard deviation was.
Another method of lowering the Chi2 was finding a part of the
function that wasn’t mapping right onto the data, and cutting that
section off (the tail ends). The closer we got to what seemed to
be the genuine values of the mean, standard deviations, constants,
and coefficients, the better the function was able to fit the data.

Figure 8. Graph of deltaE w/ curve of best fit

7 Conclusion
This semester-long process gave us a well-rounded look at many
facets of particle physics practices, and allowed us to build our
skills gradually over the course of the semester. We notably en-

Figure 9. Values of deltaE’s function of best fit

hanced our problem solving, data analysis, and programming pro-
ficiency. We also got our hands onto an operating system, soft-
ware, and realistic datasets that were completely new to us, and
were uniquely tied to the particle physics world. Looking back,
we accomplished quite a bit, and developed a better understand-
ing of many different topics while also getting the birds-eye view
of how it all fits together.

Acknowledgements
This research received support during the PHYS 2994 course, in-
structed by Professor Piilonen in the College of Science at Virginia
Polytechnic Institute and State University.

4


	Introduction
	Particle Interaction Exercises
	Python Simulations
	Navigating Linux and Tesla
	Software: Geant4, EVTGEN, & basf2
	Application of Software
	Details of Simulation Software

	Data Analysis in ROOT
	Conclusion

